150 research outputs found

    Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of <it>SLIT-ROBO </it>genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC) is missing. Hence, we quantified <it>SLIT-ROBO </it>transcripts in HCC cell lines, and in normal and tumor tissues from liver.</p> <p>Methods</p> <p>Expression of <it>SLIT-ROBO </it>family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test.</p> <p>Results</p> <p>Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: <it>ROBO1</it>, <it>ROBO2</it>, <it>SLIT1 </it>in one cluster, and <it>ROBO4</it>, <it>SLIT2</it>, <it>SLIT3 </it>in the other, respectively. Moreover, <it>SLIT-ROBO </it>expression predicted <it>AFP</it>-dependent subgrouping of HCC cell lines, but not that of liver tissues. <it>ROBO1 </it>and <it>ROBO2 </it>were significantly up-regulated, whereas <it>SLIT3 </it>was significantly down-regulated in cell lines with high-<it>AFP </it>background. When compared to normal liver tissue, <it>ROBO1 </it>was found to be significantly overexpressed, while <it>ROBO4 </it>was down-regulated in HCC. We also observed that <it>ROBO1 </it>and <it>SLIT2 </it>differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, <it>ROBO4 </it>could discriminate poorly differentiated HCC from other subgroups.</p> <p>Conclusion</p> <p>The present study is the first in comprehensive and quantitative evaluation of <it>SLIT-ROBO </it>family gene expression in HCC, and suggests that the expression of <it>SLIT-ROBO </it>genes is regulated in hepatocarcinogenesis. Our results implicate that <it>SLIT-ROBO </it>transcription profile is bi-modular in nature, and that each module shows intrinsic variability. We also provide quantitative evidence for potential use of <it>ROBO1</it>, <it>ROBO4 </it>and <it>SLIT2 </it>for prediction of tumor stage and differentiation status.</p

    Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes

    Get PDF
    Objective: Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. Method: Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. Results: In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 +/- 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. Conclusion: Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma

    Integration of transcriptome and metabolome provides unique insights to pathways associated with obese breast cancer patients

    Get PDF
    Information regarding transcriptome and metabolome has significantly contributed to identifying potential therapeutic targets for the management of a variety of cancers. Obesity has profound effects on both cancer cell transcriptome and metabolome that can affect the outcome of cancer therapy. The information regarding the potential effects of obesity on breast cancer (BC) transcriptome, metabolome, and its integration to identify novel pathways related to disease progression are still elusive. We assessed the whole blood transcriptome and serum metabolome, as circulating metabolites, of obese BC patients compared them with non-obese BC patients. In these patients' samples, 186 significant differentially expressed genes (DEGs) were identified, comprising 156 upregulated and 30 downregulated. The expressions of these gene were confirmed by qRT-PCR. Furthermore, 96 deregulated metabolites were identified as untargeted metabolomics in the same group of patients. These detected DEGs and deregulated metabolites enriched in many cellular pathways. Further investigation, by integration analysis between transcriptomics and metabolomics data at the pathway levels, revealed seven unique enriched pathways in obese BC patients when compared with non-obese BC patients, which may provide resistance for BC cells to dodge the circulating immune cells in the blood. In conclusion, this study provides information on the unique pathways altered at transcriptome and metabolome levels in obese BC patients that could provide an important tool for researchers and contribute further to knowledge on the molecular interaction between obesity and BC. Further studies are needed to confirm this and to elucidate the exact underlying mechanism for the effects of obesity on the BC initiation or/and progression

    A Genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic as well as epigenetic alterations are a hallmark of both epithelial and haematological malignancies. High throughput screens are required to identify epigenetic markers that can be useful for diagnostic and prognostic purposes across malignancies.</p> <p>Results</p> <p>Here we report for the first time the use of the MIRA assay (methylated CpG island recovery assay) in combination with genome-wide CpG island arrays to identify epigenetic molecular markers in childhood acute lymphoblastic leukemia (ALL) on a genome-wide scale. We identified 30 genes demonstrating methylation frequencies of ≥25% in childhood ALL, nine genes showed significantly different methylation frequencies in B vs T-ALL. For majority of the genes expression could be restored in methylated leukemia lines after treatment with 5-azaDC. Forty-four percent of the genes represent targets of the polycomb complex. In chronic myeloid leukemia (CML) two of the genes, (<it>TFAP2A </it>and <it>EBF2)</it>, demonstrated increased methylation in blast crisis compared to chronic phase (P < 0.05). Furthermore hypermethylation of an autophagy related gene <it>ATG16L2 </it>was associated with poorer prognosis in terms of molecular response to Imatinib treatment. Lastly we demonstrated that ten of these genes were also frequently methylated in common epithelial cancers.</p> <p>Conclusion</p> <p>In summary we have identified a large number of genes showing frequent methylation in childhood ALL, methylation status of two of these genes is associated with advanced disease in CML and methylation status of another gene is associated with prognosis. In addition a subset of these genes may act as epigenetic markers across hematological malignancies as well as common epithelial cancers.</p

    Loss of Expression and Promoter Methylation of SLIT2 Are Associated with Sessile Serrated Adenoma Formation.

    Get PDF
    Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA) and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing) and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1–4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson “two hit” hypothesis

    Tumor Suppressor RASSF1A Promoter: p53 Binding and Methylation

    Get PDF
    Oncogenes and tumor suppressors work in concert to regulate cell growth or death, which is a pair of antagonist factors for regulation of tumorigenesis. Here we show promoter characteristic of tumor suppressor RASSF1A, which revealed a p53 binding site in the distal and a GC-rich region in the proximal promoter region of RASSF1A, in despite of TATA box-less. The GC-rich region, which is ∼300 bp upstream from the RASSF1A ATG, showed the strongest promoter activity in an assay of RASSF1A-driving GFP expression. Methylation analysis of the CpG island showed that 78.57% of the GC sties were methylated in testis tumor samples compared with methylation-less in normal testis. Hypermethylation of the GC-rich region is associated with RASSF1A silencing in human testis tumors. In addition, electrophoretic mobility shift assay indicated that p53 protein bound to the RASSF1A promoter. Further chromatin immunoprecipitation confirmed p53 binding to the RASSF1A. Moreover, p53 binding to the promoter down-regulated RASSF1A expression. These results suggest that p53 protein specifically binds to the RASSF1A promoter and inhibits its expression. Our results provide new insight into the mechanism of action of tumor suppressors and may be a starting point for development of new approaches to cancer treatment
    corecore